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The dynamics of dark solitor(gorticeg with the same topological chargeorticity) in the two-dimensional
nonlinear Schrdinger (NLS) equation in a defocusing medium is studied. The dynamics differ from those in
incompressible media due to the possibility of energy and angular momentum radiation. The problem of the
breakup of a multicharged dark soliton, which is a local decrease of the wave function intensity, into a number
of chaotically moving vortices with single charge, is studied both analytically and numerically. After an initial
period of intensive wave radiation, there emergesoauniform, steady turbulergelf-organized motion of
these vortices which is restricted in space by the size of the potential well of the initial multicharged dark
soliton. Separate orbits of finite widths arise in this turbulent motion. That issttistical probabilityto
observe a vortex in a given point has maxima near certain pénkst positions. In spite of the fact that
numerical calculations were performed in a finite region, the turbulent distributions of the vortices do not
depend on the size of the container when its radius is larger than the size of the potential well of the primary
multicharged dark soliton. The steady turbulent distribution of vortices on these orbits can be obtained as the
extremal of the Lyapunov functional of the NLS equation, and obeys some simple rules. The first is the
absence of Cherenkov resonance with lingsmund waves. The second is the condition of a potential energy
maximum in the region of vortex motion. These conditions give an approximately equidistant disposition of
orbits of the same number of vortices on each orbit, which correspondsdostant rotating velocityThe
magnitude of this velocity is mainly determined by the sound velocity. An integral estimation of the self-
consistent rotation of the vortex zone is givg81063-651X99)08906-0

PACS numbgs): 47.10+g, 47.32.Cc, 42.65:k, 67.40.Vs

I. INTRODUCTION ap N
E+div(pV)=O,
The nonlinear Schadinger (NLS) equation with a repul-

sive potential R 2
AV -
a—t+(VV)V=—Vh, V=V¢,

. 1
Wi+ SA¥-U(| W)W =0 (1) with the specific enthalpy
A 1/2
h=U(p)— . 3
describes[1] the propagation of modulated ion acoustic () 2p17? ®

waves U=|¥|?), nonlinear waves in a waveguide with a

“normal” dependence of the refraction index on the light This transformation of the NLS equation to gas dynamics
intensity U=|¥ |2+ a|W¥|*), the spatial diffraction of a la- equations creates the possibility to describe the behavior of
ser beam passing through a diffraction grid and through LS solutions in terms of sound waves and vortices despite

scattering material Y=|¥|?), etc. This equation is also the potential nature of the velocity. Indeed, to produce a
used to describe Bose condensate excitatj@rs). single-valued field¥, one needs to have a velocity potential
Besides all this, there is an important Madelung transfor—¢ which is defined only up to a termzN, whereN is an
mation of this equation which leads exactly to the system Ofnteger. Thus, there are branch points or linesgotorre-
equations of gas dynamics. That is, separation of the real anghonding to singular point vortices in the two-dimensional
'maginary parts in the corr;plex equatioff) by ¥  (2p) case and to singular vortex filaments in the 3D case.
=p Ze_xpa ¢) results !”P:|q'| and the phasep, corre-  The field amplitudd¥| must be equal to zero at the branch
sponding to the density and the potential of the velocity points. The velocity circulation around this branch point has
field V=V ¢ of a compressible medium: the topological sense of an integer number of intersecting
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zero lines of the real and imaginary parts of the fif#dIt  the nontrivial long time behavior of vortices corresponds to a
leads to the topological conservation of the frozen-in law. Inturbulent motion of vortices with the same sign of the vor-
particular, any vortex can disappear only due to collapsdicity.
with a vortex having the opposite charge. Furthermore, a Such motion can be observéd] in a rotating container
vortex cannot disappear during interaction with soundwith Hell, where vortices arise due to the nonideal correc-
waves. tions such as the impurity and the mutual friction of normal
Thus the NLS equation gives one the possibilitystimu-  and superfluid components. In this case a regte@ngulay
late quicklythe behavior of almost arbitrary vortex solutions grid of separatevortices appears which rotates with the an-
and sound waves igas dynamic problemdor solutions gular velocity ) of the containef13]. Consequently, the
with a scale length greater than(‘healing length” [4]). In uniform densityw of the array of vortices and the average
this case the second term of the specific enthalpy is neglidistanceb between them is fully determined only by the
gible. One can also include an arbitrary inhomogeneity in thecontainer angular velocit@: w~ 1/b?>~ (). The average dis-
potential energyJ to describe an inhomogeneous medium.tanceb between the vortices iswuch largerthan the quan-
For example, it is possible to describe the nonuniform profileum healing length, while the vortex velocitieg~ 1/b
of the water depttH, in shallow water equationéin this  ~Q2 are much smaller than the sound speed iniHe
caseU=p/Hy—1). Hence the motion of the vortices is fully determined by their
In the 1D case, the NLS equatigh) is integrable when coordinates, and is similar to the hydrodynamic motion of
[6] U=|¥|?, and has one parametric solution in the form oftypical vortices in incompressible media. The 2D perturba-
gray soliton(e.g., an exponentially localized density well tions of the vortex positions in the grid may be treated as a
The amplitude of the modulation of gray solitons is deter-kind of wave, the so called Tkachenko wajs], with the
mined by their velocity—a weakly modulated soliton propa-Phase velocityVi~V~Q'? also determined only by the
gates with the sound velocity, while a dark solithraving a ~ container angular velocity. _
point with zero amplitudeis at rest. Like typical solitons, The dlst'rlbutlons of'vortlces in a finite space region have
these gray solitons in the integrable 1D NLS equation carp€en considered previouslg4]. To analyze the stability of
move through one another without changing their amplitudéhese distributions, the principle of the vortex free energy

of modulation. But in the nonintegrable case, the gray Soli_minimum (.e., the energy integral in the rotating container

tons are attractorg7], like typical solitons in a NLS equa- coordinate systejrwas used. It was found that stable finite

) . . . . vortex distributions have a triangular grid similar to that in
tion with an attractive potentidi8]. Thus gray solitons be- . .. 2 S o

- . . : ..~ infinite spaceThe averaged vorticity wf this finite grid is
come visible during the evolution of an arbitrary initial

e ! uniform in space like that of the 3D stable hydrodynamic
distribution of the field¥", because the more modulated gray y q|yin vortex[11]. Vortex waves in such finite distributions

solitons increase their modulation due to interactions Withalso exist, but with some corrections due to the grid surface
small modulated soliton§7]. The attractive properties of 15]. '

gray solitons are saturated for some modulation Ie_vel which |l above waves, which are perturbations of the vortex
is not necessarily equal to the maximum modulation of thejistribution, exist only within the grid and cannot radiate a
dark solitong7,9]. vortex energy and angular momentomtsidethe grid. But if
Moreover, a 1D NLS dark soliton becomes unstable withone takes radiation effects into account, i.e., finite compres-
respect to 2D perpendicular perturbatidd®]. Indeed, the sion or finite sound velocity, then the finite distribution of
1D dark soliton has coinciding zero lines of both the real andsortices will be unstable and expand due to the loss of vortex
imaginary parts of the field’. Hence any small discrepancy energy. This effect can be explained by the similarity be-
of these lines leads to the generation of a 2D vortex stredween the vortex energy integral and the energy of a set of
with alternating single intensities in places where zero linesharged particles with the same electrical chafddg. But
intersect[3,10]. However, due to sound wave radiation, thethe finite container siz& may stabilize the vortex distribu-
vortex dipoles of this street may decrease their energy. Thifon spreading11,12,16. A sufficient criterion forLyapunov
leads to a decrease of the distarideetween the vortices, 3D stabilityof the vortex distribution is the condition that the
because the energy of a solitary vortex pair is proportional tgotion of the medium is subsonic in the coordinate system
In(1), similar to that of the vortex dipole in hydrodynamics ©f rotating vortices. This can be obtained by Arnold's
[11]. The velocity of a vortex dipole increases when the dis-method of frozen-in variationgl6]. This sufficient criterion
tance between vortices decreases. When this distance be- > ) . , in
comes equal to a critical valugvhich equals 2 the local |str|but|on_ OfN. vortpes with a singléV=1 vorticity flux
sound speedwhich equals 1/%?) is reached12]. Then a (the v_elocny circulatioh In the caseN\_N<RCSo,_corre-
collapse of this dipole in finite time occurs due to CherenkoyPonding to a largécompared to the healing Iengtml%ance
resonance, and the vortices disappear. This corresponds td’§tween the vortices, this sizan,=(NWRCs))"*<R.
separation of the zero lines of the real and imaginary parts dfiere C_ is the finite sound velocity of the background me-
the field ¥. The energy radiation causing this separationdium. Thus, a circular distribution afeparatevortices, finite
leads to the disappearance of the hg¥¥$?>=0 at the loca-  in space, with @onstant averaged vorticityan be stabl§4].
tion of the collapse, and the density becomes smeared out. In One should note that the size of the vortex region can be
other words, the zero lines move to infinity. stabilized not only by the external container, but also by the
Thus any motion of vortices with different signs of the “extraordinary” terms in the equation of stafsimilar to the
vorticity leads to their disappearance. Hence, in the 2D cassecond term in Eq(3)]. For example, the “extraordinary”

f stability determines the minimum stable siag;, of the
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term in the specific enthalpy, which is inversely proportional The analytical solution of the equation for the extremal
to the square of the density, can stabilize the circular potenallows us to explain some features of the numerically ob-
tial flow around a point with a zero value of the density. served turbulencéthe orbit positions and the value of the
Indeed, in this case the flow is potential and subsonic everyself-consistent rotation We have done this analytically in
where around the hole, which is sufficient for the stability. the most simple wayassuming a zero width of the orbits,
Another case ofnitially nonseparatevortices may arise Which roughly corresponds to the mean-field approximation.
when a multicharged vortex is broken. Indeed, this multi-We have found that some features of the numerically ob-
charged dark solitorfwith total chargeN>1) has an un- sgrved turbulen_céihe orbit posmon}?are.m g.ood agreement
stable topology17], because all thel? zero lines of the real with our analytlcal mgan-ﬁeld apprOX|mat|on,'whereas Fhe
and the imaginary parts of the fiell intersect at one point. others(the mt_egral estimations of_the self-cons_lst_ent rotation
Due to this instability, thisN-charged vortex is broken into a and the density levido not coincide. This deviation is due

set of N sinalv charaed vortices. that bedin to move in theto the correlations of the vortex positions, which are not
. gy ged. ' oI : taken into account in the simplified analytical model of the
potential well of the primary vortex. Within this well the

mean field.
density| W |? is much less than the background value, and the

vortices are not separated, i.e., the distance between the vor-
tices is of the order of the healing length.
In the above case afonseparatevortices, there is no full

hydrodynamic analogy, since the density well corresponds to  Here we analyze the self-organized turbulent motion of
a hydrodynamic holéthe absence of matfeonly. No exter- 2D vortices which arises due to the breakup of a multi-
nal parameters, such as the angular container velétity ~ charged NLS dark solitofwith chargeN>1). Let us con-
the radiusR, can determine the distribution of vortices within sider Eq.(1) with the simplest nonlinearity,

the well. Only an internal parameter, the total numheof

vortices, can determine all possible characteristics ofttis u(r?)=|v|>-1, (4)
bulent inhomogeneous distribution.

In the present paper we investigate analytically and nuwhere the usual infinite boundary conditig¥r|>— 1 corre-
merically the above case of self-consistaumbulentmotion  sponds to a constant background. The phase dependence of
of nonseparate vortices. As a main result we have foundhe fieldW at infinity is not determined by this condition. We
numerically thaisteady turbulenvortex distributions appear will consider the phase dependerée—exp(iN 6), with N
in this chaotic vortex motion, and that they differ signifi- zero lines of the real part ard zero lines of the imaginary
cantly from theuniformly rotatingdistribution of the hydro-  part of the field¥ at theinfinity. According to Eqs(2), this
dynamic vortices in an incompressible medium. In particular@symptotic value corresponds to a finite value of the velocity
distinctly separate, but finite, width orbits of vortices with circulation$Vdl=2=N at infinity. Thus the conditions cho-
slightly increasing(with orbit numbey distances between sen describ& singular vorticegdark solitong located in the
them have been obtained. Such a picture cannot be explainédanch points of the fiel&, with the total vorticity(charge
by any grid vortex distribution in which far orbits are not equal toN.
separated. The vortex distribution is approximately a con- Let us first consider the multicharged dark soliton solution
stant number of vortices on each orbit. So the space averaged Eq. (1), which has the form
vortex density(vorticity) w~ 1/r differs from the case of a
uniformly rotating Kelvin vortex. Thus it gives an approxi- W(r,t)=Py(r)expiN ). (5)
mately constant distribution of the azimuthal (rotating) ve-
locity for the particulamonseparatevortices. ; ; ; ;

The value of the rotating velocity is mainly restricted by '(Ij'gf?rr]]ééhgyamphtudé’o(r) for the particular potentiald) is
the phase velocity of the linear waves that corresponds to the
absence of Cherenkov resonance. Indeed, the Cherenkov ra-
diation carries energy and angular momentum out from the i(rwf),+
vortex zone during the initial period corresponding to the 2r 0
breaking of the multN charged dark soliton. The observed

numerica”ysteady turbulenstate arises when the vortices The solution of Eq(6) cannot be expressed ana'ytica”y, but

OCCUpy the region Of the pOtential We” Of the primary mul' has the fo“owing asymptotic forms folfo(r):
ticharged dark soliton. Thstatistical probabilityto observe

a vortex in a given point can be obtained as the extremal of 2

some functional subject to NLS integrals of motion. In the \Ifo(r)—>1—(2—] , —oo,

paper we obtain this functional and the equation for its ex- r

tremal. The self-consistent rotation of a particular distribu-

tion and the total number of orbits are indeed determined Vo(r)—ar™, r—0, (7)
only by the total number of vortices, and do not depend on

the container angular velocity and radius. From an analysishere the valuex is the solution of the boundary value
of this Lyapunov functional we also found that the simple problem described by Eq&) and(7). An approximate value
criterion of the most stable distribution is a maximum of theof « can be obtained from the condition of smooth behavior
potential energy in the vortex zone. of Wy(r) at some intermediate inflection pointa:

. STEADY STATE TURBULENT VORTEX
DISTRIBUTIONS

NZ
1—|Wo|?~— | ¥o=0. (6)
2r?
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0 5 10 15 20 25 30 FIG. 2. Radius of the most distant single vortex vs time in the

. . distribution of N=13 vortices.
FIG. 1. Radial dependence of the dark soliton solutig(r)

for N=17 (curve with + signg and the potential wel|W¥ |2
(smooth curvg The approximate fornt7) for this potential well
(curve with X sign) is also shown.

To support the analytical prediction above, we have made
a numerical simulation of the NLS equati@h. Our numeri-
cal simulations were made using the finite difference method
“predictor-corrector” of second order accuracy in time and

B 1 space in order to find intersections of the zero lines of the
a= (1+0.5N)aN’ real and the imaginary parts of fielt in the simplest way
(by direct calculation of the velocity circulation near these
N 0\ 112 points. It should be noted here that for problems where the
a=—-|1+— (8)  the exact positions of vortices are not needed, one can use
2 N faster algorithms, e.g., the *“split-step” method or the

method of polynomial expansid2]. These numerical meth-
For _ez>(<)e_1mple, forN=17, the exact value ofa~2.90 g5 of solution of the NLS equation conserve both all pos-
X 10" “"is only 1.6 times greater than the one estimated fronkiple frozen-in integrals and the usual hydrodynamic inte-

Egs. (8). In Fig. 1 we plot the numerical solution of this 3
boundary value problem to show the typical form of poten—gzﬁeft:rfmmaSM’ energyE, momentumP, and angular

tial well |¥|?, and to demonstrate that the valae-9 ob-
tained from Eq(8) indeed approximately corresponds to the
position of the potential well edgs,~ 10 estimated through M =f (|¥]?2—1)d?r,
the position of tangent line in the inflection point of the
Wo(r) curve. 1 1
The multicharged dark soliton has an unstable topology. E= f (VW) 2+ (|W]2—1)2d?r,
Indeed, from Fig. 1 one can see that everywhere inside the 2 2
potential well‘lfé(r) the value of potential is very small; it i
increases monotonically, and can reach the val®e01 only (M)ZZEJ [rX(P*V¥—PVP*)],d?r, (10)

whenr~a. Thus any small perturbations of the fieli(r)
result in the appearance of additional zero®dt The whole
set of weakly perturbed solution in this potential well can
be dzescribed by Eq(l), linearized on a zero background
|\If0| ~0:

and can be used successively for fast solution of the equa-
tions of gas dynamic&2). Our numerical method conserves
exactly the mass integral only. The relative perturbations of
the angular momentum and energy integrals do not exceed
0.5% and 1.5%, respectively, during the whole time of the
numerical simulations. The numerical simulations of the
NLS equation(1) with the potentiak4) were made in a con-

All pOSSible solutions of this linear equation are free WaveSgainer with a |argdin Comparison with the size of the vortex
within the well. The intersections of zero lines of the real a”dzone radius. Only the absence of the normal component of
imaginary parts of the field may correspond to the vortex the velocity field at this boundary is assumed in the numeri-
positions. The solutions of the linear Sctimger equation ¢g| simulations.

(9) with given frequencies and boundary conditions at the Figure 2 demonstrates an example of this numerical simu-
edge of the circular potential well are Bessel functions. Thusation of the breakup of the multicharged dark soliton with
the radial distribution of the vortices has a number of sepan=13. This picture shows the radial position of the most
rate orbits corresponding to the zeros of the Bessel functiongjistant single vortex versus time. The boundégntainey

The distance between these orbits is approximately constangius in this simulation waB=50. From this figure one can
This can be seen from the dispersion relation obtained frondee that the size of the vortex zone is less than about 8.5, and
Eq. (9): wg=k?/2—1. For stationary perturbations we have is determined mainly by the radiasof the potential well of
w,=0; thus we find that the corresponding distance betweethe initial multicharged solitofja~7 according to Eq(8)].

the zeros of¥ equals\/2=m/2Y?~2.2. A more accurate The best fitting of the above radial position as a power of
calculation below gives some increa@eith the orbit num-  time gives the value zer@with the accuracy 0.001 This

ben of this distance between consecutive zeros. corresponds to at least a 40 times slower rate of expansion of

iV,+3AV+W¥=0, r<a. 9
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P (arb. units) ter with approximately coinciding maxima, i.e., the separate
0.07 3 orbits arise in the chaotic motion of vortices. In both cases
0.06 3 there is also a single vortex in the positior+0 with a sin-
0.05 3 gular density. There are three orbiftsith distribution 13=1
0.04 _ +4+4+4) for N=13, while forN=17 there are four orbits
0.03 3 (with distribution 1%=1+4+4+4+4). We can compare

) these numerical results with the solutions of the linearized

0.02 E equation(9). The steady state solution of this equation within
0.01 3 the first orbit is determined mainly by the central single vor-
0.00 Jr tex. Thus the appropriate solution will be the Bessel function

0 2 4 6 8 10 12 14 J1(2Y2r) with its first zero at the point (%r)=3.8, corre-

sponding to the first orbit position;=2.7. This value ap-

FIG. 3. Numerically obtained steady state turbulent radial dis- . X )
tributions of the probabilityP(r) to detect a vortex at radius This ~ Proximately equals the one obtained numerically. Then, be-

distribution of probabilityP(r) has maxima corresponding to the tween the first and second orbits, the solution is determined
orbit positions. This distribution consists of+4+4+4 (curve by five vortices, which can be described by a linear combi-
with points and 1+4+4+4+4 (curve with + signg vortices for  nation of the Bessel functions of fifth ordel;(2¥%) and

the cased\=13 and 17, respectively. The orbit positions coincide, Y5(2%), with coefficients satisfying the conditions to be
but a new orbit arises in the cabe=17. equal to zero at the position of the first orbit and to have
. smooth behavior in the vicinity of this position. The position
the vortex zone, comp_ared with the rf'mg=0.5/(N+1) of the next zero of this combir):ation isFr)‘nainIy deterrr?ined by
=0.04 of purely acoustic, separate vorti¢é$]. Hence not o, zeroJs(2Y7), and corresponds to the second orbit po-

all gas dynamic analogies can be applied to the particulagition r,=6.2. This value is a little greater than the numeri-

problem. The same vortex zone size was also obtained in th(?ally obtained valuer,~5. In some calculationgfor ex
279 -

caseR=25 of the container radius. Thus, the container “@Mample, in casél=11), we have not found any vortex in the
not influence significantly the size of the vortex zone.

_ _ i i T a4
The total fime T=3000) of the numerically observed central position(the appropriate distribution is H0+4+4

. . . +3). In this case the first orbit positiorr {~1) differs sig-
evolution was at least 100 times larger than the time Scalﬁificantly from those in theN=13 and 17 distributions. but
t.~a of the motion of a single vortex within the vortex zone. !

i ; ; ; 1/2 i
For example, the breakup of the initial unstable multichargedS mainly determined by the first zero dp(27), which

- D . corresponds to,=1.7.
vortex f|_n|shed at,~50. The main features of_the tu_rbulent Thus we can describe the turbulent distribution of vortices
distribution are established in at least a tirten times

. : : using the steady state solution of the linearized equdfin
2{222‘3rit?gutlgitt'mgtgnogiet;\;at\'/%?ﬁ;rehsu?nvﬁénsgretgxh%i:although there is some deviation in orbit positions, namely,
eady : L the numerically obtained distributions are more compact. But
with a restricted spatial size.

The relativelv short time periods when the radius of the'V€ will demonstrate that this deviation can be reduced by
y P taking into account the self-consistent rotation of the steady
vortex zone decreases to the vaki®&.5 may correspond to :
the Fermi-Pasta-Ul hain oh b P thstate solutions of Eq9).
€ Fermi-rasta-Liam chain phenomenon because of e 1o haricylar distributions differ significantly from the

small nonlinearity of the NLS equation in the vortex Zone'triangular grid distribution obeparatehydrodynamics vorti-

These short time periods do not significantly influence the . . : .
turbulent distribution of vortices. tes[14] in superfluid Hal. For example, the triangular grid

It is worth noting here that linear waves with classical has the following distributions for particular number of vor-

wavelengths greater than the healing length=2%° cannot tices:N=11=3+8, N=13=4+9, N=17=1+5+11, and

be radiated outside the vortex zone. This is because theSb <o~ +/+19+37+. ... These distributions corre-
. C %%ond to a uniform rotatiofwith container angular velocity
waves have a negative frequency inside the vortex zone

whereas all outgoing sound waves outside the vortex Zondf the vortex grid. Hence the distribqtions_ qf separate point
. Wortices have a uniform vortex densityorticity or curl of

must have a positive frequency. The absence of such rad'%locity)

tion can also be explained by the the acoustic model of an To uﬁderstand the reason for this difference between the

inhomogeneous medium. Indeed, in the classic ConSideratio&stributions ofseparateand nonseparatevortices, in Fig. 4

a vortex region of the particular problem corresponds to 3ve show the azimuthal and radial velocities that arise in the

Eg{?n\élvgrh f?;ttehzlz\/%r?er;dZtgﬁgergiztt'obneOglltrzﬁsvtva\g?eféfrq_m(:vortex zone in the numerical simulation fir=17 nonsepa-

S y o P " rfate vortices. One can see that the azimuthal velocity has
similar to the absence of radiation in the electrons in an . . L .
approximately a uniform profile in this zone.

atom, there is no reason to expect any outgoing radiation Taking into account the potentiéd) in Eq. (1), and lin-
from the dark solitons that move chaotically in the vortex _ .. ; : 5
earizing this equation on the backgrouh|°=1, one can

region. This may explain the stability of the vortex distribu- . : .
. . . . obtain[2] the phase velocity of linear waves away from vor-
tions in the presented numerical experiments.

H P 2 1/2 H
Let us now consider these distributions of vortices withintices,Vk=[1+ (k°/4)]"“>1. Thus to avoid Cherenkov reso-
this vortex zone. Two particular exampléer N=13 and ~ nance with sound waves any vortex in a stable distribution
17) of the radial distribution of the probability(r) to detect ~ Should not move Wfth a velocity exceeding the background
a vortex at the radial positionare presented in Fig. 3. One Sound spee€, =U,(p)=1. But the local sound spee2f
can see that these probabilities have a nonmonotonic charagp+ (ApY%4p/?) [12] can be both less tha(DSo (due to the
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V/Cqg The first variation ofF with integrals(10) for arbitrary
20 1 L variations of¥ and¥* is zero if
15 E 1
10 - QW+ EA~1f+(1—|\1f|2)\1f=c:\1f. (12
0.5 — — The extremal solution of Eq(12) has the particular
p ] asymptotic form¥ —exp(iN@g) at infinity only when C
00 F : =—NQy. To determine the second const&hy (which has
T T T the sense of the angular velocity of the vortex zone rotation
0.5 0 5 10 15 20 we consider some uniform coordinate transformatieser

of the extremal solution of Eq12) (similar to that made in
FIG. 4. Radial dependence of the averaged azimugraboth  Ref.[19] for the dipole vortex solution Under this transfor-

curve and radialcurve with X signg velocitiesV/Cs (normalized  mation, the functionaF on the extremal solution does not
to the background sound velociG ) arising in the vortex zone in change its value, while the angular momentum, the mass,
the numerical simulation foN=17. The curve with+ signs is the ~and the potential part of the energy are proportionakto
azimuthal velocity that was obtained from the vortex distribution The kinetic part of the energy also does not change its value
from Fig. 2. and, therefore, the variations of particular Lyapunov func-

tional does not diverge. Thus we obtain the self-consistent
decrease of the density¥|?) and greater thaiCs (due to  condition to determine the angular velociyy of the ex-

the inhomogeneity of the density near the vojteor ex-  tremal vortex distribution
ample, a dipole vortex begins to collapse when the velocity
of the vortex pair exceeds the local value of the sound speed ;f (|W|2—1)2d?r
[12] 1/2Y2. Thus in our case some discrepancy from the hy- _ i
drodynamic stability rule/<Cs =1 may also arise.

Starting from the first orbit position, the value of the azi-
muthal velocity is restricted mainly by the background soundt is worthwhile to note that this value dd is indeed de-
velocity Cs =1, i.e., by the minimum possible phase veloc- termined only by the distribution of vortices inside and in the

ity of linear waves, which can carry out energy and angula¥icinity of the potential well. Indeed, according to the ap-
momentum from the vortex zone. Since the turbulent motiorPfoximate forn21 of ﬂ;e dar‘[r( solito¥), both the potential part
is a steady state turbulent one, the radiation of energy an@f €nergy (¥[*—1)°~1/r* and the combination

angular momentum due to the Cherenkov radiation must be ,

prohibited. This corresponds to the azimuthal velocity pPN=prVy=p(N—¢y) -0, (14

<C, = i r) =
\;ﬁ(r) CSo_ . anhd theh averalged vortexfdensMr) L h decrease quickly outside the vortex zone where the fleld
[for Vy(r)=1]. Then the total number of vortices on eac tends to have the phase— N4.

orbit becomesN;=w(r;)r;ér,=ér;, i.e., the distance be-

tweenith and (+ 1)th orbits, which is approximately con-

stant. Thus, indeed, the observed distribution of constant v
locity of the nonseparatevortices can be explained by the
absence of Cherenkov resonance.

N™ NM—('\Z)Z (13)

According to Eq(13), the valueQ) of the angular veloc-
ity of the self-consistent rotation of the vortex zone depends
%n the density level¥|? in this region. A small level of the
density gives a large value dd, because both the mass
X ) . . integral and the angular momentum are proportional to this
A more precise solutioriwhich takes into account the yongivy Byt the large velocity of the angular rotation of the

seli—conzl_sielgt trptaﬂon of;he V&rtex éOrl;ﬂf the preferr;edth vortex zone with finite size corresponds to a large azimuthal
vortex distribution can Dbe obtaine y means o evelocity that may exceed the speed of sound and produce
Lyapunov functional. This functional looks like vortex free

. Cherenkov radiation. Thus the breakup of the multicharged
energy[14], but does not depend on the container gngulahark soliton and the development of the turbulent motion
veI00|ty.. I.nd(_aed, let us consider thg functiorfaonsisting results in the appearance of some mass in the potential well
of nontrivial integrals(10) of the particular problem in order to increase the density ley&f|2 and to remove the
. Cherenkov radiation.

F=E+Qn(M),+CM, 11 We now proceed to obtain simple criteria on the most

stable vortex distribution within the vortex zone. To this end,

where() andC are Lagrange multipliers. The kinetic part we substitute the extremal solutidgh?) into the functional
of the energy integrét in this functional diverges at infinity. (11). Taking into account Eq(13) in the resulting expres-
But for the Lyapunov principle, only the convergence of sion, this leads to the result
variations of the functional is required. Thus to avoid diver-
gence one can calculate the variation of this functional from . 2o 1 42
some solution of Eq(1) with the particular boundary condi- F—EJ (Vw)=d r—zf (1—|Ww|*d?r. (15)
tions ¥ —exp(@N6). For our purposes, it is convenient to
calculate the variation of this functional from the initial so- Again, the divergence df can be eliminated by calculating
lution in the form of a dark solitofEq. (6)] or from its  the difference between this functional and the one on the
approximate expression given by H@). multicharged dark soliton with the asymptotic forf#) at
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infinity. Equation(15) indicates that the functiond has a W, P (arb. units)

minimum if the nonlinear part of the potential energy 0.4 3 £

03 F 3

J |\1f|4d2r=f p(U+1)d?r (16) 8‘? E E

: . . . 0.0 £ 3

has a maximum in the vortex zone. Since the density fluc- E 3

tuations| ¥ |? lead to an increase of the nonlinear part of the -0.1 E 3

potential energy, the nonuniform density profile between the -0.2 E E

orbits of vortices arises in order to provide a more stable -0.3 E 3
vortex distribution. It should also be noted that there is an- 0.4 B bl L s L dr
other interpretation of stable vortex distribution which is due 0O 2 4 6 8 10 12 14

to the minimum of the integraf15) FIG. 5. The solutior¥(r) of Eq. (19) for the approximate ex-

tremal distribution ofN=17 vortices(smooth curvg vs radiusr.
f (VW¥)2d?r= f p\72+(Vpl/2)2d2r, (17)  The positions of the zeros of this function were found to coincide
with the numerically obtained maxima of the probabiltyo detect

o . . ) o the vortex at the position (curve with + signs from Fig. 2
This integral is mainly determined by the kinetic energy of

the vortices. Thus the rotation of the vortex zone with some angular ve-
Equations(12) and (13) for the extremal distribution of locity can remove the deviation in the orbital positions
vortices and for the self-consistent rotation of the vortexfound.
zone are the exact ones. As a final point, we point out that we
can obtain the approximate extremal solution of Etp), ll. SUMMARY
which describes a stable vortex distribution, and compare
this solution with the results of numerical simulation. To do  The steady state turbulence of singly charged dark soli-
this analytically, we consider the mean-field approximationions corresponding to topologically stable solutions of the
corresponding to the absence of azimuthal fluctuations of thR| s equation has been analyzed both analytically and nu-
density| |2 This leads to a zero width of the vortex orbits. merically. This turbulence arises after the breakup of a mul-
We also assume, as before, in obtaining the steady state sgcharged dark soliton with a topologically unstable structure.
lution of the linearized equatiof®), that the phaséor veloc-  The turbulent motion of the singly charged dark solitons has
ity potential ¢) of the extremal fieldV between the orbitt  poth features of the motion of radiating vortices in gas dy-
and (+1) is determined only by the total numb& of  namics(or radiating charges in electrodynanjiend quan-
vortices oninner orbits. In this case the nonlinear term in EqQ. tym properties. The number of dark solitofrtice can
(12) is small in the vortex zone; hence the correspondingjefine such turbulent motion completely.
nonlinear interactioriwhich leads to some finite level of the  \we found that this turbulent motion is characterized by
radial fluctuations of¥|?) is also small. Taking into account the formation of stable vortex orbits in the potential well of
this phase dependenge=S,6, we obtain the extremal solu- the primary multicharged dark soliton. These orbits are sepa-
tion rated distinctly and have a finite width. The distances be-
tween the orbits are approximately constant. No vortices can
> : move through the boundary of the potential well of the pri-
Pe(r, O =T (r)exp(iS.b), Sk_j:() ~k N; (18 mary multic?warged dark so)I/iton duriFrng the long time evglu-
tion studied. We found that the turbulent distributions of the
between the orbitk and k+1. Then Eq.(12) yields the Vortices do not depend on the size of the container when its

equation for the radial dependence of the amplitite), radius is larger than the size of the potential well of the
primary multicharged dark soliton. This can be explained by
1 SE the existence of the “extraordinary” quantum term in the
—(rP') +11+Q\(N=S)—|¥|?- —¥=0, state equatiort3) which determines the characteristic quan-

2r 2r? tum length.
19 The distribution of singly charged dark solitons on these

. ) ) . “quantum” orbits can be explained by means of a gas dy-
where{)y is determined self-consistently by conditiof8).  namic analogy. That is, the vortices in the particular steady
Vortex orbits are located in zeros of the functi@h(r,t).  turbulent distribution cannot be in Cherenkov resonance with
Because Eq(19) has a second derivative term, a smoothsound waves, to prevent the radiation of energy from the
behavior of¥(r) in these zeros is necessary. The nonlineatortex zone. Thus azimuthal velocities of vortices cannot
term in Eq.(19) is used to obtain the correct asymptotic form exceed the speed of sound. This gives a constant number of
(7) only outsidethe vortex zone, and to obtain the density dark solitons on each “quantum” orbit, in contrast to the
level inside the vortex zone. uniform rotation of the separate hydrodynamic vortices. The

Figure 5 demonstrates the solutidn(r) of Eq. (19) for particular distribution is similar to the model of the “vortex
N=17 for the value of the angular velocifyy=1/N at the  atom” with the Pauli exclusion principle for vortices due to
boundary of the vortex zone. One can see the coincidence ef small probability of short distances between them. Indeed,
all orbit positions(zeros of¥) with those indicated in Fig. 3. neighboring vortices will quickly radiate energy, and diverge
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to some finite distance on the order of the quantum healingpond to a container rotation as it does in the case of separate
length. hydrodynamic vortices in superfluid helium. Then the crite-
Classic linear waves with wavelengths greater than théion of the most stable distribution corresponds to the maxi-
healing length cannot be radiated outside the vortex zone dugum of the potential energy with respect to the background.
to reflection from the potential well that determines the sizel he approximate solution of these extremal distributions, in
of the vortex zone. Moreover, the distribution of the vorticesthe framework of an axially symmetric modedorrespond-
found describes the lowegground quantum level of the ing to the mean-field approximatiprdemonstrates the good
particular problenfi.e., the state with the minimum value of agreement of the orbital positions with those obtained from
the free energy11)]. Thus the radiation outside the vortex direct numerical simulation of the NLS equation. But there
zone can be adiabatically prohibited, similar to the absenc@'® some d|screpan0|§§ both between the predlcteq qnd cal-
of radiation from the distribution of the electrons in the culated angular velocities and the density level within the

ground level of a stable atom. This may explain the numerivortex zone. These discrepancies arise due to correlations
cally observed stability of the vortex distributions during and fluctuations of the vortices, which have not been taken

their long-time evolution into account in the simplified axially symmetric model and

Thus the main reason for the difference between thd®d4!™® careful investigations.
stable vortex distributiorrotating with constant azimuthal
velocity obtained in the present paper and tlemstant vor-
ticity distribution in the form of infinite or finite latticd3— The authors are grateful to K.V. Chukbar and V.V.
15] is the distance between the vortices. In our case thi¥ankov for useful discussions. We are also grateful to Bo
distance is of the order of the healing length, the vortices ard@hide for his help in performing the numerical simulations
nonseparatedand the radiating effects are most important.on the Lufsen Work Station. One of the authdisA.l.)

But in the opposite case of a grid séparatevortices(as in ~ would like to acknowledge the hospitality of the Department
a rotating container with He), the constant vorticity distri-  of Space and Plasma Physics at Uppsala University, and for
butionis only determined by an external parameter—the anproviding excellent conditions for collaboration. This work
gular velocity of the container. was partially supported by the Russian State Program “Fun-

We found a simple criterion for the most staltlgbulent  damental Problems of Nonlinear Dynamics,” and by the
distribution of particular chaotically moving, nonseparate“Russian Fund of Fundamental Research¢&tant No. 98-
vortices. The analysis is based on nontrivial extremal solud2-17174a This work was supported by the European Com-
tions of the Lyapunov functional. This functional corre- munities under an Association Contract between EURA-
sponds to the energy integral in some self-consistently rotaffOM and the Swedish Natural Science Research Council
ing coordinate system. The angular velocity of this rotation(NFR) under Grant Nos. F-FU 10700-302, F-AC/FF 10700-
depends only on the vortex distribution, and does not corre303, and F-AA/FU 06481-309.
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