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Self-consistent turbulence in the two-dimensional nonlinear Schro¨dinger equation
with a repulsive potential
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The dynamics of dark solitons~vortices! with the same topological charge~vorticity! in the two-dimensional
nonlinear Schro¨dinger ~NLS! equation in a defocusing medium is studied. The dynamics differ from those in
incompressible media due to the possibility of energy and angular momentum radiation. The problem of the
breakup of a multicharged dark soliton, which is a local decrease of the wave function intensity, into a number
of chaotically moving vortices with single charge, is studied both analytically and numerically. After an initial
period of intensive wave radiation, there emerges anonuniform, steady turbulentself-organized motion of
these vortices which is restricted in space by the size of the potential well of the initial multicharged dark
soliton. Separate orbits of finite widths arise in this turbulent motion. That is, thestatistical probabilityto
observe a vortex in a given point has maxima near certain points~orbit positions!. In spite of the fact that
numerical calculations were performed in a finite region, the turbulent distributions of the vortices do not
depend on the size of the container when its radius is larger than the size of the potential well of the primary
multicharged dark soliton. The steady turbulent distribution of vortices on these orbits can be obtained as the
extremal of the Lyapunov functional of the NLS equation, and obeys some simple rules. The first is the
absence of Cherenkov resonance with linear~sound! waves. The second is the condition of a potential energy
maximum in the region of vortex motion. These conditions give an approximately equidistant disposition of
orbits of the same number of vortices on each orbit, which corresponds to aconstant rotating velocity. The
magnitude of this velocity is mainly determined by the sound velocity. An integral estimation of the self-
consistent rotation of the vortex zone is given.@S1063-651X~99!08906-0#

PACS number~s!: 47.10.1g, 47.32.Cc, 42.65.2k, 67.40.Vs
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I. INTRODUCTION

The nonlinear Schro¨dinger ~NLS! equation with a repul-
sive potential

iC t
.1

1

2
DC2U~ uCu2!C50 ~1!

describes@1# the propagation of modulated ion acous
waves (U5uCu2), nonlinear waves in a waveguide with
‘‘normal’’ dependence of the refraction index on the lig
intensity (U5uCu21auCu4), the spatial diffraction of a la-
ser beam passing through a diffraction grid and throug
scattering material (U5uCu2), etc. This equation is also
used to describe Bose condensate excitations@2–5#.

Besides all this, there is an important Madelung transf
mation of this equation which leads exactly to the system
equations of gas dynamics. That is, separation of the real
imaginary parts in the complex equation~1! by C
5r1/2exp(if) results inr5uCu2 and the phasef, corre-
sponding to the densityr and the potential of the velocity

field VW 5¹f of a compressible medium:
PRE 601063-651X/99/60~1!/492~8!/$15.00
a

r-
f

nd

]r

]t
1div~rVW !50,

~2!

]VW

]t
1~VW ¹!VW 52¹h, VW [¹f,

with the specific enthalpy

h5U~r!2
Dr1/2

2r1/2
. ~3!

This transformation of the NLS equation to gas dynam
equations creates the possibility to describe the behavio
NLS solutions in terms of sound waves and vortices des

the potential nature of the velocityVW . Indeed, to produce a
single-valued fieldC, one needs to have a velocity potenti
f which is defined only up to a term 2pN, whereN is an
integer. Thus, there are branch points or lines off corre-
sponding to singular point vortices in the two-dimension
~2D! case and to singular vortex filaments in the 3D ca
The field amplitudeuCu must be equal to zero at the branc
points. The velocity circulation around this branch point h
the topological sense of an integer number of intersec
492 ©1999 The American Physical Society
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PRE 60 493SELF-CONSISTENT TURBULENCE IN THE TWO- . . .
zero lines of the real and imaginary parts of the fieldC. It
leads to the topological conservation of the frozen-in law.
particular, any vortex can disappear only due to colla
with a vortex having the opposite charge. Furthermore
vortex cannot disappear during interaction with sou
waves.

Thus the NLS equation gives one the possibility tosimu-
late quicklythe behavior of almost arbitrary vortex solution
and sound waves ingas dynamic problems, for solutions
with a scale length greater than 1~‘‘healing length’’ @4#!. In
this case the second term of the specific enthalpy is ne
gible. One can also include an arbitrary inhomogeneity in
potential energyU to describe an inhomogeneous mediu
For example, it is possible to describe the nonuniform pro
of the water depthH0 in shallow water equations~in this
caseU5r/H021).

In the 1D case, the NLS equation~1! is integrable when
@6# U5uCu2, and has one parametric solution in the form
gray soliton~e.g., an exponentially localized density wel!.
The amplitude of the modulation of gray solitons is det
mined by their velocity—a weakly modulated soliton prop
gates with the sound velocity, while a dark soliton~having a
point with zero amplitude! is at rest. Like typical solitons
these gray solitons in the integrable 1D NLS equation
move through one another without changing their amplitu
of modulation. But in the nonintegrable case, the gray s
tons are attractors,@7#, like typical solitons in a NLS equa
tion with an attractive potential@8#. Thus gray solitons be
come visible during the evolution of an arbitrary initi
distribution of the fieldC, because the more modulated gr
solitons increase their modulation due to interactions w
small modulated solitons@7#. The attractive properties o
gray solitons are saturated for some modulation level wh
is not necessarily equal to the maximum modulation of
dark solitons@7,9#.

Moreover, a 1D NLS dark soliton becomes unstable w
respect to 2D perpendicular perturbations@10#. Indeed, the
1D dark soliton has coinciding zero lines of both the real a
imaginary parts of the fieldC. Hence any small discrepanc
of these lines leads to the generation of a 2D vortex st
with alternating single intensities in places where zero lin
intersect@3,10#. However, due to sound wave radiation, t
vortex dipoles of this street may decrease their energy. T
leads to a decrease of the distancel between the vortices
because the energy of a solitary vortex pair is proportiona
ln( l ), similar to that of the vortex dipole in hydrodynamic
@11#. The velocity of a vortex dipole increases when the d
tance between vortices decreases. When this distance
comes equal to a critical value~which equals 2!, the local
sound speed~which equals 1/21/2) is reached@12#. Then a
collapse of this dipole in finite time occurs due to Cherenk
resonance, and the vortices disappear. This corresponds
separation of the zero lines of the real and imaginary part
the field C. The energy radiation causing this separat
leads to the disappearance of the holesuCu250 at the loca-
tion of the collapse, and the density becomes smeared ou
other words, the zero lines move to infinity.

Thus any motion of vortices with different signs of th
vorticity leads to their disappearance. Hence, in the 2D c
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the nontrivial long time behavior of vortices corresponds t
turbulent motion of vortices with the same sign of the vo
ticity.

Such motion can be observed@4# in a rotating container
with HeII , where vortices arise due to the nonideal corre
tions such as the impurity and the mutual friction of norm
and superfluid components. In this case a regular~triangular!
grid of separatevortices appears which rotates with the a
gular velocity V of the container@13#. Consequently, the
uniform densityw of the array of vortices and the averag
distanceb between them is fully determined only by th
container angular velocityV: w;1/b2;V. The average dis-
tanceb between the vortices ismuch largerthan the quan-
tum healing length, while the vortex velocitiesV;1/b
;V1/2 are much smaller than the sound speed in HeII.
Hence the motion of the vortices is fully determined by th
coordinates, and is similar to the hydrodynamic motion
typical vortices in incompressible media. The 2D perturb
tions of the vortex positions in the grid may be treated a
kind of wave, the so called Tkachenko wave@13#, with the
phase velocityVkW;V;V1/2 also determined only by the
container angular velocity.

The distributions of vortices in a finite space region ha
been considered previously@14#. To analyze the stability of
these distributions, the principle of the vortex free ener
minimum ~i.e., the energy integral in the rotating contain
coordinate system! was used. It was found that stable fini
vortex distributions have a triangular grid similar to that
infinite space.The averaged vorticity wof this finite grid is
uniform in space like that of the 3D stable hydrodynam
Kelvin vortex @11#. Vortex waves in such finite distribution
also exist, but with some corrections due to the grid surf
@15#.

All above waves, which are perturbations of the vort
distribution, exist only within the grid and cannot radiate
vortex energy and angular momentumoutsidethe grid. But if
one takes radiation effects into account, i.e., finite compr
sion or finite sound velocity, then the finite distribution
vortices will be unstable and expand due to the loss of vor
energy. This effect can be explained by the similarity b
tween the vortex energy integral and the energy of a se
charged particles with the same electrical charges@11#. But
the finite container sizeR may stabilize the vortex distribu
tion spreading@11,12,16#. A sufficient criterion forLyapunov
3D stabilityof the vortex distribution is the condition that th
motion of the medium is subsonic in the coordinate syst
of rotating vortices. This can be obtained by Arnold
method of frozen-in variations@16#. This sufficient criterion
of stability determines the minimum stable sizeamin of the
distribution of N vortices with a singleW51 vorticity flux
~the velocity circulation!. In the caseNW!RCs0

, corre-
sponding to a large~compared to the healing length! distance
between the vortices, this sizeamin5(NWR/Cs0

)1/2!R.

HereCs0
is the finite sound velocity of the background m

dium. Thus, a circular distribution ofseparatevortices, finite
in space, with aconstant averaged vorticitycan be stable@4#.

One should note that the size of the vortex region can
stabilized not only by the external container, but also by
‘‘extraordinary’’ terms in the equation of state@similar to the
second term in Eq.~3!#. For example, the ‘‘extraordinary’’



a
te
ty
er
.

lti

l
.
a
he
e
th
v

s

in

nu

un
r
-

la
th

in
ot
on
ag

i-
e-

y
t
v
th
he
d
s
l-

l
he
ex
u
e
o

ys
le

he

al
b-

e

,
on.
ob-
t
he
ion
e
ot

he

of
lti-

ce of
e

ity
-

on

ut

e

ior

494 PRE 60IVONIN, PAVLENKO, AND PERSSON
term in the specific enthalpy, which is inversely proportion
to the square of the density, can stabilize the circular po
tial flow around a point with a zero value of the densi
Indeed, in this case the flow is potential and subsonic ev
where around the hole, which is sufficient for the stability

Another case ofinitially nonseparatevortices may arise
when a multicharged vortex is broken. Indeed, this mu
charged dark soliton~with total chargeN@1) has an un-
stable topology@17#, because all the 2N zero lines of the rea
and the imaginary parts of the fieldC intersect at one point
Due to this instability, thisN-charged vortex is broken into
set of N singly charged vortices, that begin to move in t
potential well of the primary vortex. Within this well th
densityuCu2 is much less than the background value, and
vortices are not separated, i.e., the distance between the
tices is of the order of the healing length.

In the above case ofnonseparatevortices, there is no full
hydrodynamic analogy, since the density well correspond
a hydrodynamic hole~the absence of matter! only. No exter-
nal parameters, such as the angular container velocityV or
the radiusR, can determine the distribution of vortices with
the well. Only an internal parameter, the total numberN of
vortices, can determine all possible characteristics of thistur-
bulent, inhomogeneous distribution.

In the present paper we investigate analytically and
merically the above case of self-consistentturbulentmotion
of nonseparate vortices. As a main result we have fo
numerically thatsteady turbulentvortex distributions appea
in this chaotic vortex motion, and that they differ signifi
cantly from theuniformly rotatingdistribution of the hydro-
dynamic vortices in an incompressible medium. In particu
distinctly separate, but finite, width orbits of vortices wi
slightly increasing~with orbit number! distances between
them have been obtained. Such a picture cannot be expla
by any grid vortex distribution in which far orbits are n
separated. The vortex distribution is approximately a c
stant number of vortices on each orbit. So the space aver
vortex density~vorticity! w;1/r differs from the case of a
uniformly rotating Kelvin vortex. Thus it gives an approx
mately constant distribution of the azimuthal (rotating) v
locity for the particularnonseparatevortices.

The value of the rotating velocity is mainly restricted b
the phase velocity of the linear waves that corresponds to
absence of Cherenkov resonance. Indeed, the Cherenko
diation carries energy and angular momentum out from
vortex zone during the initial period corresponding to t
breaking of the multi-N charged dark soliton. The observe
numerically steady turbulentstate arises when the vortice
occupy the region of the potential well of the primary mu
ticharged dark soliton. Thestatistical probabilityto observe
a vortex in a given point can be obtained as the extrema
some functional subject to NLS integrals of motion. In t
paper we obtain this functional and the equation for its
tremal. The self-consistent rotation of a particular distrib
tion and the total number of orbits are indeed determin
only by the total number of vortices, and do not depend
the container angular velocity and radius. From an anal
of this Lyapunov functional we also found that the simp
criterion of the most stable distribution is a maximum of t
potential energy in the vortex zone.
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The analytical solution of the equation for the extrem
allows us to explain some features of the numerically o
served turbulence~the orbit positions and the value of th
self-consistent rotation!. We have done this analytically in
the most simple way, assuming a zero width of the orbits
which roughly corresponds to the mean-field approximati
We have found that some features of the numerically
served turbulence~the orbit positions! are in good agreemen
with our analytical mean-field approximation, whereas t
others~the integral estimations of the self-consistent rotat
and the density level! do not coincide. This deviation is du
to the correlations of the vortex positions, which are n
taken into account in the simplified analytical model of t
mean field.

II. STEADY STATE TURBULENT VORTEX
DISTRIBUTIONS

Here we analyze the self-organized turbulent motion
2D vortices which arises due to the breakup of a mu
charged NLS dark soliton~with chargeN@1). Let us con-
sider Eq.~1! with the simplest nonlinearity,

U~ uCu2!5uCu221, ~4!

where the usual infinite boundary conditionuCu2→1 corre-
sponds to a constant background. The phase dependen
the fieldC at infinity is not determined by this condition. W
will consider the phase dependenceC→exp(iNu), with N
zero lines of the real part andN zero lines of the imaginary
part of the fieldC at theinfinity. According to Eqs.~2!, this
asymptotic value corresponds to a finite value of the veloc
circulationrVW dlW52pN at infinity. Thus the conditions cho
sen describeN singular vortices~dark solitons! located in the
branch points of the fieldC, with the total vorticity~charge!
equal toN.

Let us first consider the multicharged dark soliton soluti
of Eq. ~1!, which has the form

C~rW,t !5C0~r !exp~ iNu!. ~5!

Then, the amplitudeC0(r ) for the particular potential~4! is
defined by

1

2r
~rC08!81S 12uC0u22

N2

2r 2D C050. ~6!

The solution of Eq.~6! cannot be expressed analytically, b
has the following asymptotic forms forC0(r ):

C0~r !→12H N

2r J 2

, r→`,

C0~r !→ar N, r→0, ~7!

where the valuea is the solution of the boundary valu
problem described by Eqs.~6! and~7!. An approximate value
of a can be obtained from the condition of smooth behav
of C0(r ) at some intermediate inflection pointr 5a:
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a5
1

~110.5N!aN
,

a5
N

2 S 11
2

ND 1/2

. ~8!

For example, for N517, the exact value ofa'2.90
310220 is only 1.6 times greater than the one estimated fr
Eqs. ~8!. In Fig. 1 we plot the numerical solution of thi
boundary value problem to show the typical form of pote
tial well uC0u2, and to demonstrate that the valuea'9 ob-
tained from Eq.~8! indeed approximately corresponds to t
position of the potential well edgeab'10 estimated through
the position of tangent line in the inflection point of th
C0(r ) curve.

The multicharged dark soliton has an unstable topolo
Indeed, from Fig. 1 one can see that everywhere inside
potential wellC0

2(r ) the value of potential is very small; i
increases monotonically, and can reach the value'0.01 only
when r'a. Thus any small perturbations of the fieldC(rW)
result in the appearance of additional zeros ofC2. The whole
set of weakly perturbed solutionsC in this potential well can
be described by Eq.~1!, linearized on a zero backgroun
uC0u2'0:

iC t
.1 1

2 DC1C50, r ,a. ~9!

All possible solutions of this linear equation are free wav
within the well. The intersections of zero lines of the real a
imaginary parts of the fieldC may correspond to the vorte
positions. The solutions of the linear Schro¨dinger equation
~9! with given frequencies and boundary conditions at
edge of the circular potential well are Bessel functions. Th
the radial distribution of the vortices has a number of se
rate orbits corresponding to the zeros of the Bessel functi
The distance between these orbits is approximately cons
This can be seen from the dispersion relation obtained f
Eq. ~9!: vkW5kW2/221. For stationary perturbations we hav
vk50; thus we find that the corresponding distance betw
the zeros ofC equalsl/25p/21/2'2.2. A more accurate
calculation below gives some increase~with the orbit num-
ber! of this distance between consecutive zeros.

FIG. 1. Radial dependence of the dark soliton solutionC0(r )
for N517 ~curve with 1 signs! and the potential welluC0u2

~smooth curve!. The approximate form~7! for this potential well
~curve with3 sign! is also shown.
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To support the analytical prediction above, we have ma
a numerical simulation of the NLS equation~1!. Our numeri-
cal simulations were made using the finite difference meth
‘‘predictor-corrector’’ of second order accuracy in time an
space in order to find intersections of the zero lines of
real and the imaginary parts of fieldC in the simplest way
~by direct calculation of the velocity circulation near the
points!. It should be noted here that for problems where
the exact positions of vortices are not needed, one can
faster algorithms, e.g., the ‘‘split-step’’ method or th
method of polynomial expansion@2#. These numerical meth
ods of solution of the NLS equation conserve both all p
sible frozen-in integrals and the usual hydrodynamic in
grals of the massM, energyE, momentumPW , and angular
momentumMW :

M5E ~ uCu221!d2r ,

E5E 1

2
~¹C!21

1

2
~ uCu221!2d2r ,

~MW !z5
i

2E @rW3~C* ¹C2C¹C* !#zd
2r , ~10!

and can be used successively for fast solution of the eq
tions of gas dynamics~2!. Our numerical method conserve
exactly the mass integral only. The relative perturbations
the angular momentum and energy integrals do not exc
0.5% and 1.5%, respectively, during the whole time of t
numerical simulations. The numerical simulations of t
NLS equation~1! with the potential~4! were made in a con-
tainer with a large~in comparison with the size of the vorte
zone! radius. Only the absence of the normal componen
the velocity field at this boundary is assumed in the num
cal simulations.

Figure 2 demonstrates an example of this numerical sim
lation of the breakup of the multicharged dark soliton w
N513. This picture shows the radial position of the mo
distant single vortex versus time. The boundary~container!
radius in this simulation wasR550. From this figure one can
see that the size of the vortex zone is less than about 8.5,
is determined mainly by the radiusa of the potential well of
the initial multicharged soliton@a'7 according to Eq.~8!#.
The best fitting of the above radial position as a power
time gives the value zero~with the accuracy 0.001!. This
corresponds to at least a 40 times slower rate of expansio

FIG. 2. Radius of the most distant single vortex vs time in t
distribution ofN513 vortices.
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496 PRE 60IVONIN, PAVLENKO, AND PERSSON
the vortex zone, compared with the ratega50.5/(N11)
50.04 of purely acoustic, separate vortices@18#. Hence not
all gas dynamic analogies can be applied to the partic
problem. The same vortex zone size was also obtained in
caseR525 of the container radius. Thus, the container c
not influence significantly the size of the vortex zone.

The total time (T53000) of the numerically observe
evolution was at least 100 times larger than the time sc
tc;a of the motion of a single vortex within the vortex zon
For example, the breakup of the initial unstable multicharg
vortex finished attb'50. The main features of the turbule
distribution are established in at least a timeten times
smallerthan the time of observation. Thus we indeed hav
steady turbulent motion of the vortices in the vortex zo
with a restricted spatial size.

The relatively short time periods when the radius of t
vortex zone decreases to the value'5.5 may correspond to
the Fermi-Pasta-Ulam chain phenomenon because of
small nonlinearity of the NLS equation in the vortex zon
These short time periods do not significantly influence
turbulent distribution of vortices.

It is worth noting here that linear waves with classic
wavelengths greater than the healing lengthl.p20.5 cannot
be radiated outside the vortex zone. This is because t
waves have a negative frequency inside the vortex zo
whereas all outgoing sound waves outside the vortex z
must have a positive frequency. The absence of such ra
tion can also be explained by the the acoustic model of
inhomogeneous medium. Indeed, in the classic considera
a vortex region of the particular problem corresponds t
hole with finite size, and the reflection of the waves from t
boundary of the vortex zone must be almost perfect. Th
similar to the absence of radiation in the electrons in
atom, there is no reason to expect any outgoing radia
from the dark solitons that move chaotically in the vort
region. This may explain the stability of the vortex distrib
tions in the presented numerical experiments.

Let us now consider these distributions of vortices with
this vortex zone. Two particular examples~for N513 and
17! of the radial distribution of the probabilityP(r ) to detect
a vortex at the radial positionr are presented in Fig. 3. On
can see that these probabilities have a nonmonotonic cha

FIG. 3. Numerically obtained steady state turbulent radial d
tributions of the probabilityP(r ) to detect a vortex at radiusr. This
distribution of probabilityP(r ) has maxima corresponding to th
orbit positions. This distribution consists of 1141414 ~curve
with points! and 114141414 ~curve with1 signs! vortices for
the casesN513 and 17, respectively. The orbit positions coincid
but a new orbit arises in the caseN517.
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ter with approximately coinciding maxima, i.e., the separ
orbits arise in the chaotic motion of vortices. In both cas
there is also a single vortex in the positionr'0 with a sin-
gular density. There are three orbits~with distribution 1351
141414! for N513, while forN517 there are four orbits
~with distribution 175114141414!. We can compare
these numerical results with the solutions of the lineariz
equation~9!. The steady state solution of this equation with
the first orbit is determined mainly by the central single vo
tex. Thus the appropriate solution will be the Bessel funct
J1(21/2r ) with its first zero at the point (21/2r )53.8, corre-
sponding to the first orbit positionr 152.7. This value ap-
proximately equals the one obtained numerically. Then,
tween the first and second orbits, the solution is determi
by five vortices, which can be described by a linear com
nation of the Bessel functions of fifth order,J5(21/2r ) and
Y5(21/2r ), with coefficients satisfying the conditions to b
equal to zero at the position of the first orbit and to ha
smooth behavior in the vicinity of this position. The positio
of the next zero of this combination is mainly determined
first zeroJ5(21/2r ), and corresponds to the second orbit p
sition r 2>6.2. This value is a little greater than the nume
cally obtained valuer 2'5. In some calculations~for ex-
ample, in caseN511), we have not found any vortex in th
central position~the appropriate distribution is 11501414
13!. In this case the first orbit position (r 1'1) differs sig-
nificantly from those in theN513 and 17 distributions, bu
is mainly determined by the first zero ofJ0(21/2r ), which
corresponds tor 151.7.

Thus we can describe the turbulent distribution of vortic
using the steady state solution of the linearized equation~9!,
although there is some deviation in orbit positions, name
the numerically obtained distributions are more compact.
we will demonstrate that this deviation can be reduced
taking into account the self-consistent rotation of the ste
state solutions of Eq.~9!.

The particular distributions differ significantly from th
triangular grid distribution ofseparatehydrodynamics vorti-
ces@14# in superfluid HeII . For example, the triangular grid
has the following distributions for particular number of vo
tices:N5115318, N5135419, N5175115111, and
N5`51171191371••• . These distributions corre
spond to a uniform rotation~with container angular velocity!
of the vortex grid. Hence the distributions of separate po
vortices have a uniform vortex density~vorticity or curl of
velocity!.

To understand the reason for this difference between
distributions ofseparateandnonseparatevortices, in Fig. 4
we show the azimuthal and radial velocities that arise in
vortex zone in the numerical simulation forN517 nonsepa-
rate vortices. One can see that the azimuthal velocity h
approximately a uniform profile in this zone.

Taking into account the potential~4! in Eq. ~1!, and lin-
earizing this equation on the backgrounduCu251, one can
obtain@2# the phase velocity of linear waves away from vo
tices,VkW5@11(kW2/4)#1/2.1. Thus to avoid Cherenkov reso
nance with sound waves any vortex in a stable distribut
should not move with a velocity exceeding the backgrou
sound speedCs0

5Ur8(r)51. But the local sound speedCs
2

[r1(Dr1/2/4r1/2) @12# can be both less thanCs0
~due to the

-

,
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decrease of the densityuCu2) and greater thanCs0
~due to

the inhomogeneity of the density near the vortex!. For ex-
ample, a dipole vortex begins to collapse when the velo
of the vortex pair exceeds the local value of the sound sp
@12# 1/21/2. Thus in our case some discrepancy from the
drodynamic stability ruleV,Cs0

51 may also arise.
Starting from the first orbit position, the value of the az

muthal velocity is restricted mainly by the background sou
velocity Cs0

51, i.e., by the minimum possible phase velo
ity of linear waves, which can carry out energy and angu
momentum from the vortex zone. Since the turbulent mot
is a steady state turbulent one, the radiation of energy
angular momentum due to the Cherenkov radiation mus
prohibited. This corresponds to the azimuthal veloc
Vu(r )<Cs0

51 and the averaged vortex densityw(r )51/r

@for Vu(r )51]. Then the total number of vortices on ea
orbit becomesNi5w(r i)r idr i5dr i , i.e., the distance be
tween i th and (i 11)th orbits, which is approximately con
stant. Thus, indeed, the observed distribution of constant
locity of the nonseparatevortices can be explained by th
absence of Cherenkov resonance.

A more precise solution~which takes into account th
self-consistent rotation of the vortex zone! of the preferred
vortex distribution can be obtained by means of t
Lyapunov functional. This functional looks like vortex fre
energy@14#, but does not depend on the container angu
velocity. Indeed, let us consider the functionalF consisting
of nontrivial integrals~10! of the particular problem

F5E1VN~MW !z1CM, ~11!

whereVN andC are Lagrange multipliers. The kinetic pa
of the energy integralE in this functional diverges at infinity
But for the Lyapunov principle, only the convergence
variations of the functional is required. Thus to avoid dive
gence one can calculate the variation of this functional fr
some solution of Eq.~1! with the particular boundary condi
tions C→exp(iNu). For our purposes, it is convenient
calculate the variation of this functional from the initial s
lution in the form of a dark soliton@Eq. ~6!# or from its
approximate expression given by Eq.~7!.

FIG. 4. Radial dependence of the averaged azimuthal~smooth
curve! and radial~curve with3 signs! velocitiesV/Cs0

~normalized
to the background sound velocityCs0

) arising in the vortex zone in
the numerical simulation forN517. The curve with1 signs is the
azimuthal velocity that was obtained from the vortex distributi
from Fig. 2.
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The first variation ofF with integrals~10! for arbitrary
variations ofC andC* is zero if

iVNCu81
1

2
DC1~12uCu2!C5CC. ~12!

The extremal solution of Eq.~12! has the particular
asymptotic formC→exp(iNu) at infinity only when C
[2NVN . To determine the second constantVN ~which has
the sense of the angular velocity of the vortex zone rotatio!,
we consider some uniform coordinate transformationr→«r
of the extremal solution of Eq.~12! ~similar to that made in
Ref. @19# for the dipole vortex solution!. Under this transfor-
mation, the functionalF on the extremal solution does no
change its value, while the angular momentum, the ma
and the potential part of the energy are proportional to«2.
The kinetic part of the energy also does not change its va
and, therefore, the variations of particular Lyapunov fun
tional does not diverge. Thus we obtain the self-consist
condition to determine the angular velocityVN of the ex-
tremal vortex distribution

VN5

1
2 E ~ uCu221!2d2r

NM2~MW !z

. ~13!

It is worthwhile to note that this value ofVN is indeed de-
termined only by the distribution of vortices inside and in t
vicinity of the potential well. Indeed, according to the a
proximate form of the dark soliton~7!, both the potential part
of energy (uCu221)2;1/r 4 and the combination

rN2rrVu5r~N2fu8!→0, ~14!

decrease quickly outside the vortex zone where the fieldC
tends to have the phasef→Nu.

According to Eq.~13!, the valueVN of the angular veloc-
ity of the self-consistent rotation of the vortex zone depen
on the density leveluCu2 in this region. A small level of the
density gives a large value ofVN because both the mas
integral and the angular momentum are proportional to
density. But the large velocity of the angular rotation of t
vortex zone with finite size corresponds to a large azimut
velocity that may exceed the speed of sound and prod
Cherenkov radiation. Thus the breakup of the multicharg
dark soliton and the development of the turbulent mot
results in the appearance of some mass in the potential
in order to increase the density leveluCu2 and to remove the
Cherenkov radiation.

We now proceed to obtain simple criteria on the mo
stable vortex distribution within the vortex zone. To this en
we substitute the extremal solution~12! into the functional
~11!. Taking into account Eq.~13! in the resulting expres-
sion, this leads to the result

F5 1
2 E ~¹C!2d2r 5 1

2 E ~12uCu4!d2r . ~15!

Again, the divergence ofF can be eliminated by calculatin
the difference between this functional and the one on
multicharged dark soliton with the asymptotic form~7! at
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infinity. Equation~15! indicates that the functionalF has a
minimum if the nonlinear part of the potential energy

E uCu4d2r 5E r~U11!d2r ~16!

has a maximum in the vortex zone. Since the density fl
tuationsuCu2 lead to an increase of the nonlinear part of t
potential energy, the nonuniform density profile between
orbits of vortices arises in order to provide a more sta
vortex distribution. It should also be noted that there is
other interpretation of stable vortex distribution which is d
to the minimum of the integral~15!

E ~¹C!2d2r 5E rVW 21~¹r1/2!2d2r , ~17!

This integral is mainly determined by the kinetic energy
the vortices.

Equations~12! and ~13! for the extremal distribution of
vortices and for the self-consistent rotation of the vor
zone are the exact ones. As a final point, we point out that
can obtain the approximate extremal solution of Eq.~12!,
which describes a stable vortex distribution, and comp
this solution with the results of numerical simulation. To
this analytically, we consider the mean-field approximat
corresponding to the absence of azimuthal fluctuations of
densityuCu2. This leads to a zero width of the vortex orbit
We also assume, as before, in obtaining the steady stat
lution of the linearized equation~9!, that the phase~or veloc-
ity potentialf) of the extremal fieldC between the orbitsk
and (k11) is determined only by the total numberSk of
vortices oninner orbits. In this case the nonlinear term in E
~12! is small in the vortex zone; hence the correspond
nonlinear interaction~which leads to some finite level of th
radial fluctuations ofuCu2) is also small. Taking into accoun
this phase dependencef5Sku, we obtain the extremal solu
tion

Ce~rW,t !5C~r !exp~ iSku!, Sk5 (
j 50 4 k

Nj ~18!

between the orbitsk and k11. Then Eq.~12! yields the
equation for the radial dependence of the amplitudeC(r ),

1

2r
~rC8!81H 11VN~N2Sk!2uCu22

Sk
2

2r 2J C50,

~19!

whereVN is determined self-consistently by condition~13!.
Vortex orbits are located in zeros of the functionCe(rW,t).
Because Eq.~19! has a second derivative term, a smoo
behavior ofC(r ) in these zeros is necessary. The nonlin
term in Eq.~19! is used to obtain the correct asymptotic for
~7! only outsidethe vortex zone, and to obtain the dens
level inside the vortex zone.

Figure 5 demonstrates the solutionC(r ) of Eq. ~19! for
N517 for the value of the angular velocityVN51/N at the
boundary of the vortex zone. One can see the coincidenc
all orbit positions~zeros ofC) with those indicated in Fig. 3
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Thus the rotation of the vortex zone with some angular
locity can remove the deviation in the orbital positio
found.

III. SUMMARY

The steady state turbulence of singly charged dark s
tons corresponding to topologically stable solutions of
NLS equation has been analyzed both analytically and
merically. This turbulence arises after the breakup of a m
ticharged dark soliton with a topologically unstable structu
The turbulent motion of the singly charged dark solitons h
both features of the motion of radiating vortices in gas d
namics~or radiating charges in electrodynamics! and quan-
tum properties. The number of dark solitons~vortices! can
define such turbulent motion completely.

We found that this turbulent motion is characterized
the formation of stable vortex orbits in the potential well
the primary multicharged dark soliton. These orbits are se
rated distinctly and have a finite width. The distances
tween the orbits are approximately constant. No vortices
move through the boundary of the potential well of the p
mary multicharged dark soliton during the long time evo
tion studied. We found that the turbulent distributions of t
vortices do not depend on the size of the container when
radius is larger than the size of the potential well of t
primary multicharged dark soliton. This can be explained
the existence of the ‘‘extraordinary’’ quantum term in th
state equation~3! which determines the characteristic qua
tum length.

The distribution of singly charged dark solitons on the
‘‘quantum’’ orbits can be explained by means of a gas d
namic analogy. That is, the vortices in the particular stea
turbulent distribution cannot be in Cherenkov resonance w
sound waves, to prevent the radiation of energy from
vortex zone. Thus azimuthal velocities of vortices cann
exceed the speed of sound. This gives a constant numb
dark solitons on each ‘‘quantum’’ orbit, in contrast to th
uniform rotation of the separate hydrodynamic vortices. T
particular distribution is similar to the model of the ‘‘vorte
atom’’ with the Pauli exclusion principle for vortices due
a small probability of short distances between them. Inde
neighboring vortices will quickly radiate energy, and diver

FIG. 5. The solutionC(r ) of Eq. ~19! for the approximate ex-
tremal distribution ofN517 vortices~smooth curve! vs radiusr.
The positions of the zeros of this function were found to coinc
with the numerically obtained maxima of the probabilityP to detect
the vortex at the positionr ~curve with1 signs from Fig. 2!.
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to some finite distance on the order of the quantum hea
length.

Classic linear waves with wavelengths greater than
healing length cannot be radiated outside the vortex zone
to reflection from the potential well that determines the s
of the vortex zone. Moreover, the distribution of the vortic
found describes the lowest~ground! quantum level of the
particular problem@i.e., the state with the minimum value o
the free energy~11!#. Thus the radiation outside the vorte
zone can be adiabatically prohibited, similar to the abse
of radiation from the distribution of the electrons in th
ground level of a stable atom. This may explain the num
cally observed stability of the vortex distributions durin
their long-time evolution.

Thus the main reason for the difference between
stable vortex distributionrotating with constant azimutha
velocityobtained in the present paper and theconstant vor-
ticity distribution in the form of infinite or finite lattices@13–
15# is the distance between the vortices. In our case
distance is of the order of the healing length, the vortices
nonseparated, and the radiating effects are most importa
But in the opposite case of a grid ofseparatevortices~as in
a rotating container with HeII!, the constant vorticity distri-
bution is only determined by an external parameter—the
gular velocity of the container.

We found a simple criterion for the most stableturbulent
distribution of particular chaotically moving, nonsepara
vortices. The analysis is based on nontrivial extremal so
tions of the Lyapunov functional. This functional corr
sponds to the energy integral in some self-consistently ro
ing coordinate system. The angular velocity of this rotat
depends only on the vortex distribution, and does not co
an
g

e
ue
e

e

i-

e

is
re
.

-

-

t-
n
e-

spond to a container rotation as it does in the case of sepa
hydrodynamic vortices in superfluid helium. Then the cri
rion of the most stable distribution corresponds to the ma
mum of the potential energy with respect to the backgrou
The approximate solution of these extremal distributions
the framework of an axially symmetric model~correspond-
ing to the mean-field approximation!, demonstrates the goo
agreement of the orbital positions with those obtained fr
direct numerical simulation of the NLS equation. But the
are some discrepancies both between the predicted and
culated angular velocities and the density level within t
vortex zone. These discrepancies arise due to correlat
and fluctuations of the vortices, which have not been ta
into account in the simplified axially symmetric model an
require careful investigations.
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